THE RADON-NIKODYM THEOREM FOR A NONABSOLUTE INTEGRAL ON MEASURE SPACES
نویسندگان
چکیده
منابع مشابه
The Radon-Nikodym Theorem for Reflexive Banach Spaces El Teorema de Radon-Nikodym para Espacios de Banach Reflexivos
In this short paper we prove the equivalence between the RadonNikodym Theorem for reflexive Banach spaces and the representability of weakly compact operators with domain L(μ).
متن کاملA Reformulation of the Radon-nikodym Theorem
The Radon-Nikodym theorems of Segal and Zaanen are principally concerned with the classification of those measures p. for which any X« p. is given in the form
متن کاملDifferentiability of Lipschitz Maps from Metric Measure Spaces to Banach Spaces with the Radon Nikodym Property
In this paper we prove the differentiability of Lipschitz maps X → V , where X is a complete metric measure space satisfying a doubling condition and a Poincaré inequality, and V denotes a Banach space with the Radon Nikodym Property (RNP). The proof depends on a new characterization of the differentiable structure on such metric measure spaces, in terms of directional derivatives in the direct...
متن کاملA Radon-nikodym Theorem for Stone Algebra Valued Measures
Introduction. Let C(S) be the ring of continuous real valued functions on a compact Hausdorff space S. Stone [5] shows that each bounded subset of C(S) has a least upper bound (in C(S)) if and only if the closure of each open subset of S is open ; in this event we call C(S) a Stone algebra. Throughout this paper C(S) is a Stone algebra. It is convenient to adjoin an object +00, not in C(S), and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Korean Mathematical Society
سال: 2004
ISSN: 1015-8634
DOI: 10.4134/bkms.2004.41.1.153